Search results for "multivalued mapping"
showing 10 items of 10 documents
On an idea of Bakhtin and Czerwik for solving a first-order periodic problem
2017
We study the existence of solutions to a first-order periodic problem involving ordinary differential equations, by using the quasimetric structure suggested by Bakhtin and Czerwik. The presented approach involves technical conditions and fixed point iterative schemes to yield new theoretical results guaranteeing the existence of at least one solution.
A fixed point theorem for G-monotone multivalued mapping with application to nonlinear integral equations
2017
We extend notion and theorem of [21] to the case of a multivalued mapping defined on a metric space endowed with a finite number of graphs. We also construct an example to show the generality of our result over existing results. Finally, we give an application to nonlinear integral equations
Comments on the paper "COINCIDENCE THEOREMS FOR SOME MULTIVALUED MAPPINGS" by B. E. RHOADES, S. L. SINGH AND CHITRA KULSHRESTHA
2011
The aim of this note is to point out an error in the proof of Theorem 1 in the paper entitled “Coincidence theorems for some multivalued mappings” by B. E. Rhoades, S. L. Singh and Chitra Kulshrestha [Internat. J. Math. & Math. Sci., 7 (1984), 429-434], and to indicate a way to repair it.
On dependence of sets of functions on the mean value of their elements
2009
The paper considers, for a given closed bounded set M ⊂ R m and K = (0,1) n ⊂ R n , the set M = {h ϵ L2 (K;R m ) | h(x) ϵ M a.e.x ϵ K} and its subsets It is shown that, if a sequence {hk } ⊂ coM converges to an element hk ϵ M(hk ) there is h‘k ϵ M(ho ) such that h'k - hk → 0 as k → ∞ . If, in addition, the set M is finite or M is the convex hull of a finite set of elements, then the multivalued mapping h → M(h) is lower semicontinuous on coM. First published online: 14 Oct 2010
Common fixed points of generalized Mizoguchi-Takahashi type contractions in partial metric spaces
2015
We give some common fixed point results for multivalued mappings in the setting of complete partial metric spaces. Our theorems extend and complement analogous results in the existing literature on metric and partial metric spaces. Finally, we provide an example to illustrate the new theory.
An approximate fixed point result for multivalued mappings under two constraint inequalities
2017
We consider an approximate multivalued fixed point problem under two constraint inequalities, for which we provide sufficient conditions for the existence of at least one solution. Then, we present some consequences and related results.
On Edelstein Type Multivalued Random Operators
2014
The purpose of this paper is to provide stochastic versions of several results on fixed point theorems in the literature.
A generalization of Nadler fixed point theorem
2015
Jleli and Samet gave a new generalization of the Banach contraction principle in the setting of Branciari metric spaces [Jleli, M. and Samet, B., A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014:38 (2014)]. The purpose of this paper is to study the existence of fixed points for multivalued mappings, under a similar contractive condition, in the setting of complete metric spaces. Some examples are provided to illustrate the new theory.
Solvability of integrodifferential problems via fixed point theory in b-metric spaces
2015
The purpose of this paper is to study the existence of solutions set of integrodifferential problems in Banach spaces. We obtain our results by using fixed point theorems for multivalued mappings, under new contractive conditions, in the setting of complete b-metric spaces. Also, we present a data dependence theorem for the solutions set of fixed point problems.
Fixed points for multivalued mappings in b-metric spaces
2015
In 2012, Samet et al. introduced the notion ofα-ψ-contractive mapping and gave sufficient conditions for the existence of fixed points for this class of mappings. The purpose of our paper is to study the existence of fixed points for multivalued mappings, under anα-ψ-contractive condition of Ćirić type, in the setting of completeb-metric spaces. An application to integral equation is given.